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Abstract-An engineering theory for predicting interfacial stresses in finite bi-annular cylinders
subjected to thermally induced or external loading is developed for the evaluation ofepoxy molding
compounds for plastic packaging of microelectronic devices. Bi-material co-axial cylindrical speci
mens are being used to characterize the adhesive strength ofseveral molding compound candidates.
With this theory, it is possible to calculate both shearing and normal (radial) stresses arising at the
interface between an inner (adherend) and outer (adhesive) cylinder. Predictions for a pyrex(inner)
epoxy(outer) bi-annular cylinder agree well with the results from finite element analyses. It is
concluded that bi-annular cylindrical specimens can be successfully applied to evaluate the adhesive
strength of materials.

Although our theory has been developed for a specific materials science problem. it has a broad
scope of applications. Examples include insulated tubes, electrical wires. coated optical fibers. high
pressure vessels. various shaft-hub joints. and even barrels of artillery guns.

INTRODUCTION

Bi-annular cylindrical structures are widespread in engineering. Examples are: insulated
tubes and electrical wires, coated optical fibers, high-pressure vessels, barrels of artillery
guns, and shaft-hub joints in gears, turbines and propellers. The problem of finding a
complete solution for the three-dimensional elastic or thermoelastic equations of solid
mechanics for such structures is one of extraordinary analytical difficulty (see, for instance.
Filon (1902), Lurie (1955), Takeuti et al. (1983) and Hetnarski (1986». Therefore,our
analysis ofbi-annular cylinders, when subjected to thermally induced and/or external shear
loading, is based on more or less elementary methods of structural mechanics, rather than
on rigorous approaches of mathematical physics.

In this study, emphasis is on the evaluation of interfacial stresses responsible for the
adhesive strength of the cylinder. It is assumed that no special adhesive material is used, so
that interfacial adhesive strength is due to the cylinder materials themselves. Obviously.
this requires that at least one of these materials exhibits adhesive properties.

This analysis is performed in connection with an evaluation study of epoxy molding
compounds for microelectronics packaging. In this study co-axial cylindrical specimens are
being used to characterize the adhesive strength of the candidate materials. The inner
cylinders in these specimens are made of nickel, copper or gold-plated nickel, while the
outer cylinders are composed of the epoxy materials under evaluation. All of the epoxies
are expected to have good adhesive properties. In order to perform experimental photo
elastic stress analysis (ASTM F-IOO), we also include specimens whose inner cylinders are
made of pyrex.

Typical bi-material co-axial specimens are shown in Fig. I as they appear prior to
testing (pyrex inserts are shown in this picture). The shearing force necessary to overcome
adhesion and friction between the two materials is applied using an Instron machine with
specially designed fixtures. During testing, these fixtures and a test specimen are arranged
as shown by the schematic cross-section in Fig. 2. Figure 3 is a photograph of the fixtures
and also shows three specimens after having been tested. Compressive loading during testing
is applied at a constant strain rate until the adhesion between the two materials breaks
down. Figure 4 illustrates the important features ofa typical force vs. time printout obtained
from each test. Total shear-oft' force can be described as the sum of the interfacial adhesive
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strength and a frictional force. which is due to the thermally induced lateral interfacial
pressure.

The main purpose of the analysis below is to detamine the shearing and the normal
(radial) interfacial stresses due to the thermal contraction mismatch of the materials. as
well as the interfacial shearing stresses caused by external shear loading. The analytical
model which is developed enables one to evaluate the mechanical performance ofadhesively
bonded bi-annular cylindrical structures and test specimens under the combined action of
thermal and external loading.

THEORY

I. Basic equations
Let a bi-annular circular cylinder of finite length be fabricated at an elevated tem

perature and subsequently cooled down by the temperature t1.t. This generates distributed
shearing r(=) and radial p(z) stresses acting at the interface of the inner and the outer
cylinders and caused by the thermal contraction mismatch of the cylinder materials.

If the stresses r(=) and p(r) were known, then the axial w(=) and the radial u(z)
interfacial displacements of the component cylinders could be evaluated by the following
approximate formulas:

wo(=) = -('.(ot1.!Z+Ao J: T(Od(-Kor(=)-J1o J:P(')d'}

Wl(=) = -('.(,t1.tz-;., J: T(Od(+K,r(=)+J11 J: p(Od(

uo(=) = -ccot1.tr l -borIP(=) -'/or, T(Z)}
UI(Z) = -cc,t1.tr,+b,r,p(=)-~·lr,T(=) .

(I)

(2)

Here wo(z) and w,(z) are the axial interfacial displacements of the inner and the outer
cylinders, respectively, uo(z) and Ul(Z) are the radial interfacial displacements.

T(z) = f= 1'(0 d(
-I

(3)

is the axial force at the given cross-section z, I is half the cylinder's length, ('.(0 and ('.( I are
coefficients of thermal expansion of the cylinder materials (:<, > ('.(0),

(4)

are the axial compliances of the cylinders, ro is the inner radius of the inner cylinder, rl is
the interfacial radius, r2 is the outer radius of the bi-annular (outer) cylinder. Eo and E 1

are Young's moduli of the materials,

_ ro+rl
ro =-2-

(5)

are the interfacial axial compliances of the cylinders (Appendix A), Vo and v 1 are Poisson's
ratios of the materials,
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Fig. 1.
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2vo rf
Jl.o = -E -2--2'

o r, -rO
(6)

are the compliance factors for the axial displacements with respect to the lateral pressure
(Appendix B),

(7)

are the compliance factors for the radial displacements with respect to the axial force T(z)
(Appendix C), and <>0 and <>\ are the compliance factors for the radial displacements with
respect to the lateral pressure. The latter factors should be calculated by the formulas
(Appendix C)

<> _ (l-vo)rf+(l+vo)r~ <> _ (l-v\)rf+(l+v\)d
0- Eo(rf-d) , \ - E\(d-rD (8)

for relatively short ("disc-like") cylinders, when a plane stress approximation is applicable,
or by the formulas

(9)

in the case of sufficiently long ("tube-like") cylinders, when a plane strain approximation
should be used. For some geometries, the aspect ratios of the inner and outer cylinders may
be such that the factor <>0 should be evaluated by the plane strain formula, while the factor
<>, should be determined on the basis of the plane stress formula. The difference in the
numerical results is small, however, in any event. The origin of the coordinates r, z is located
at the middle of the cylinder axis.
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The first terms in (I) and (2) are unrestricted thermal contractions. The second terms
in (1) are axial interfacial displacements caused by the forces T(=) and evaluated under an
assumption that these forces are uniformly distributed over the cylinder cross-sections. The
third terms in (I) account for the non-uniform distribution of the forces T(z) and reflect
an assumption that the corresponding corrections depend only on the shearing force in the
given cross-section and are not affected by forces acting in other cross-sections. The last
terms in (I) are due to the lateral pressure p(z). The second terms in the formulas (2) are
radial interfacial displacements due to the lateral pressure p(z), and the third terms account
for the additional radial displacements caused by the axial forces T(z). The derivations of
the formulas for the above components of the axial and radial interfacial displacements are
given in Appendices Band C. Note that a similar approach was taken!n an approximate
stress analysis of bi-metal thermostats (Suhir. 1986).

Conditions for the compatibility of displacements require that the axial interfacial
displacements of the inner cylinder be equal to the axial displacements of the outer cylinder,
and that the radial interfacial displacements of the inner cylinder be equal to the radial
displacements of the outer cylinder:

(10)

Substituting (1) and (2) into (10) we obtain the following basic equations for the unknown
stress functions r(z) and p(z):

c5p(z)+yT(z) = dCl:D.!

where the following notation is used:

(11)

(12)

). = Ao+A.(, K = Ko+KI' J1. == J.lO+J1.I' c5 = c5 o+<>I' Y= yo+y,. dCl::::::: x, -(Xo·

(13)
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2. Solutions to the basic equations
Solving (12) for the function p(=) and substituting the obtained expression into (11)

we have:

(14)

where the eigenvalue k and the constant Co are expressed by the formulas:

(15)

The integral equation (14) contains just one unknown function-the interfacial shearing
stress -r(z).

Differentiating (14) by z, we obtain:

(16)

Obviously, when the cylinder is subjected to thermal loading only, no axial forces act at its
end cross-sections z =/ and therefore the force T(z) must be zero at the ends: T(/) = O.
This leads to the following boundary condition for the function -r(=) :

-r'(/) = Coaa.at.

The differentiation of the eqn (16) yields:

This simple homogeneous equation has the following solution:

-r(z) = Csinhkz+Dcoshkz

(17)

(18)

(19)

where C and D are constants of integration. The function -r(z) must be anti-symmetric with
respect to the origin z = O. Since, however, cosh kz is a symmetric function, we put the
constant D equal to zero. Then we have:

-r(z) = Csinhkz.

Introducing (20) into (17) we obtain the following formula for the constant C:

aa.at
C = Co k cosh kf

Thus, the interfacial shearing stress is expressed as

-r(z) = -rmaxXt(z),

(20)

(21)

(22)
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/).ccM
rma< = r(l) = Co~ tanh kl (23)

is the maximum shearing stress at the end cross sections == ±I, and the function

sinhkz
X.(z) = sinh kl' 0 < x, < L (24)

characterizes the distribution of the interfacial shearing stress along the cylinder.
When the kl value is large enough (say, greater than 3.5), the eqns (22) and (23) can

be simplified;

..(?) _ .. e- k(l-:j
"' .... - "max , (25)

These formulas indicate that the maximum shearing stresses for sufficiently long (large 1
values) cylinders with stiff interfaces (large k values) are independent of the cylinder length
and drop exponentially with decreasing z, i.e., they concentrate near the ends of the cylinder.

In another extreme case, when the kl value is small (say, smaller than 0.1), i.e. in the
case of a "disc-like" cylinder, the formulas (22) and (23) yield:

(26)

Hence, for short cylinders with sufficiently compliant interfaces the shearing stress is linearly
distributed along the cylinder.

Note, that if the effect of lateral pressure on the shearing stress were not considered
(Jl = 0), then the formulas (IS) would result in the following equations for the eigenvalue
k and the shearing stress factor Co:

(27)

This k value is greater and the Co value is smaller than the corresponding values determined
by (15). Hence, as evident from (25), not taking into account the effect of the lateral pressure
results in smaller shearing stresses, which, in addition, are distributed over a smaller region
than the stresses determined on the basis of the more general formulas (15).

After substituting (20) into (3) we find, that the axial shearing force is expressed as :

where

T(z) = - ToXr(z)/).ccM (28)

(29)
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coshkz
Xr(=) = 1- cosh kl
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(30)

characterizes the distribution of the force T(z) along the cylinder.
When the kl value is large ("tube-like" cylinders), the factor Xr(z) can be expressed by

a simplified formula:

Xr(=) = l-e-k(l-:). (31)

As evident from this formula, for small =values, Le. for the cross-sections remote from the
cylinder ends, the function Xr(z) is close to unity, and the force T(=) is independent of the
location of the given cross-section z along the cylinder. Near the ends, where the z coordinate
is on the same order as I, this force rapidly drops and turns to zero at the edges. In the case
of a very short ("disc-like") cylinder, the function Xr(z) can be presented as

Hence, the force T(z) changes in this case in accordance with a parabolic law.
The maximum shearing force occurs at the mid-cross-section and is

T(O) = Tmax = - ToXr(O)AcxAt

where

1
Xr(O) = Xmax = 1- cosh kf

(32)

(33)

(34)

For sufficiently long cylinders (l- (0) Xr(O) ;: 1. For short cylinders when cosh kl;:
1+ !(kl) 2, the factor Xr(O) is Xr(O) ;: !(kl) 2.

The radial pressure can be determined by introducing (28) into (12). This leads to an
equation:

p(z) = p(l)xp(z)

where

p(l) = Aa.At
~

is the radial pressure at the end cross-sections, and the function

(35)

(36)

(37)

characterizes the longitudinal distribution of the radial pressure.
For long enough cylinders, when the Xr value is close to unity, the function Xp(z) takes

the greatest value, which is Xp = 1+c, and the radial pressure is equal to
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Po = (I + c)p(f) (38)

for almost the entire cylinder. Only at the very ends this pressure decreases to the p(f) value.
For very short cylinders the factor Xmax is small and the factor XP is close to unity, so that
the interfacial pressure is equal to p(f) throughout the cylinder.

Note, that if the effect of the shearing stress on the radial pressure were not taken into
account (;: = 0), then, as evident from (37), the factor XP would be close to unity and the
interfacial pressure would become uniform and equal to p(f) throughout the cylinder, as in
the case of a small-length cylinder.

The total lateral force due to the normal pressure pC::) is

[I 4nr
Pn = 4nr( Jo pC::) d:: = T p(l)[(l +c)kl-ctanh kl].

For long cylinders this formula can be simplified to:

For short cylinders the formula (39) yields:

(39)

(40)

(41)

Thus, the total lateral force increases with an increase in the cylinder length. In the case of
a very long cylinder this force is greater than in the case of a short cylinder by the factor
of I +c.

3. External shear loading
Unlike thermally induced shearing stress, the shearing stress due to the external shear

loading is symmetric with respect to the origin (Fig. 6a and b). In this case it is the constant
C in the solution (19) which should be put equal to zero, so that this solution can be sought
in the form:

r(z) = D cosh kz.

Then the axial force at cross-section z is

T(z) = f, r(z)dz = ~(Sinhkl+sinhkZ).

Introducing this equation into the boundary condition

where Fa is the external shear force at the end plane of the cylinder, we have:

kFaD= .
41tr I sinh kl

Then eqn (43) yields:

(42)

(43)

(44)

(45)
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T(=) = 4
Fa

1H=).
1trl

sinhkz
1Hz) = 1+ sinh kl
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(46)

(47)

reflects the distribution of the force T(z) along the cylinder.
Obviously, for each of the component cylinders, the axial force is zero at one end, is

expressed by the formula (44) at the other end, and, based on symmetry considerations,
must be twice as small as the T(/) value in the middle of the cylinder:

Fa Fa
T( -I) = 0, T(O) = 4-' T(/) = -?-.

1tr\ _1tr\
(48)

Introducing (45) into (42) we obtain the following formula for the shearing stress:

't(z) = 'tmax1~(z)

where

kEa
'tmax = 't(/) = 4-cotanh kl

1&r 1

is the maximum stress (at the end cross-sections), and the function

coshkz
1~(Z) = coshkl

(49)

(50)

(51)

characterizes the longitudinal distribution ofthe shearing stress, Note, that unlike thermally
induced shearing stress, the stress caused by the external shear loading is not zero at the
mid-cross-section z = 0:

'teO) = kFa 'tmax
41tr I sinh kl = cosh kf

(52)

However, for long enough cylinders with stiff interfaces (large kl values) this stress in the
mid-cross-section is very small. The maximum shearing stress in such cylinders is inde
pendent of the cylinder length and, as follows from (50), is expressed by the formula:

kFa

'tmax = 41tr \ •

The function 1~(Z) for long-and-stiff cylinders can be presented as

1~(z) ~ e-k(/-z).

(53)

(54)

This formula indicates that the shearing stress concentrates near the cylinder ends and
drops exponentially with the decrease in the coordinate z. Thus, for sufficiently long
cylinders the distribution of the shearing stress due to an external shearing force is similar
to the distribution of the thermally induced shearing stress.

For short cylinders the function 1i- which characterizes the longitudinal distribution
of the axial force is close to 2, and the formula (46) yields:
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(55)

Hence, the shearing stress in short cylinders is uniformly distributed over their lengths and
can be evaluated by the formula

(56)

If a bi-annular cylinder experiences both thermally induced and external loading, then
the total shearing stress can be evaluated as superposition of the solutions (22) and (49):

T sinh k:: cosh k=
r(::) = rma, -:--hkl +r;;'a'-h" kl'sm' cos'

(57)

Here r~a, is the maximum thermal shearing stress expressed by (13), and r;;'a, is the
maximum shearing stress due to the external loading and expressed by (50), As evident
from (57), the maximum total shearing stress is

at one end of the cylinder, and is

r(l) = r~a, + r:;'a,

r(-l) = -r~a,+r;;'a,

(58)

(59)

at the other end (Fig. 6a and b).
If destructive shear-off tests are performed and the measured total and frictional forces

are F, and FI , respectively (Fig. 4), then the adhesive force Fa can be obtained as Fa = F, - Fl'
The ultimate maximum shearing stress that the interface is able to withstand can be
calculated by the formula (58). As a by-product, the coefficient of friction between the
cylinder materials can be determined:

f = Ff
P'n

(60)

Here Pn is the total force due to the normal thermally induced pressure. This force can be
calculated by (39).

NUMERICAL EXAMPLE

We carry out a numerical example for a bi-annular cylinder, where the inner cylinder
is made of pyrex (Eo = 9.1 x 106 psi = 6.278 x 10IQ Pa, VQ = 0.2, OCQ = 2.8 X 10- 6 IrC) and
the outer cylinder is fabricated of epoxy (E, = 2.1 x 10- 6 psi = 1.449 x 10 10 Pa, VI = 0.35,
oc I = 22.0 x 10- 6 I tC). The inner, interfacial and outer radii of the cylinder are rQ = 0.094
in = 2.39 mm, rl = 0.175 in = 4.44 mm and r~ = 0.4375 in = lU12 mm, respectively. The
half length of the cylinder is I = 0.250 in =6.35 mm. and the change in temperature is
!!.t = 150°C.



lIb
(I'N)
in 3/lb
(m 3,N)
inz/lb
(mz/N)
inz/lb
(mZjN)
I'lb
(Ijm)

Ao = 1.6054 x 10-·
(3.6115 x 10- 7

)

"0 = 1.5989 x 10- 8

(5.8882 x 10- ")
Ilo = 6.1781 X 10- 8

(8.9574 x 10- I z)
,)0 = 1.6468 x 10- 7

(2.3877 x 10- IZ)
10 = 3.2108 x 10- 7

(7.2154 x 10- 8
)
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Table I

A, = 0.9428 x 10-'
(2.1208 x 10-')

'" = 18.2679 x 10- 8

(67.2502 x \2- ")
III = 6.3493 X 10- 8

(9.2057 x 10- I z)
,), = 8.0204 x 10- 7

(11.6286 x 10- IZ)
II = 3.2998 x 10- 7

(7.4149 x 10- 8
)

A= 1.5482 X 10- 6

(5.7323 x IO~ ')
,,= 19.8669 x IO~R

(73.1384 x 10- ")
Il = 12.5274 x 10- 8

(18.1631 x 10-")
,) = 9.6672 X 10-'
(14.0163 x IO-'z)
y = 6.5106 X 10- 7

(14.6303 x 10 - 8)
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!:1a.!:1t = 0.00288. k = 3.5216 Ilin = 138.72 11m.
Co = 56857671b/in3 = 1.55438 x IO 'Z N/m 3

, C = 3290 psi = 22.697 x 106 Pa.
Tm.. = 3286 psi = 22.669 x W Pa, pel) = 2979 psi = 20.551 x 106 Pa. c = 0.2985.
Xma, = 0.2927. prO) = Pm., = 3239 psi = 22.345 x 106 Pa.

Calculated values for the major parameters affecting the magnitude and the distribution
of the interfacial stresses ,(z) and p(z) are shown in Table I. The factors 15 0 and 15 J for the
interfacial compliance of the cylinders in the radial direction are calculated by the plane
strain formulas.

The calculated stresses ,(z) and p(z) are plotted in Fig. 5a, where the results of the
finite-element analysis are also indicated. The analytical and numerical data are in fairly
good agreement, especially for the shearing stress.

If the influence of the lateral pressure on the shearing stress were not considered
(J.l = 0), then the maximum shearing stress would be 'max = 2939 psi (20.275 x 106 Pa),
which is about 10% smaller than the value obtained by taking this influence into account.
If the effect of the shearing stress on the lateral pressure were not considered (y = 0), then
this pressure would be constant along the interface and equal to p(l) = 2979 psi (20.551 x 106

Pa). The calculated pressure in the middle of the cylinder, when this effect was taken into
account, is about 8% greater.

If the value of k/ becomes greater than, say, 3.5, then the tanh k/ and ?ema. values are
very close to unity, and the interfacial stresses cease to increase with a further increase in
the length of the cylinder. In the above example this takes place when the half length of the
cylinder is about I in (25.4 mm). The calculated maximum values of the shearing and the
normal radial stresses for / = I in are 'max = 4650 psi (32.079 x 106 Pa) and Pma. = 3740 psi
(25.801 x 106 Pa). The distribution of the calculated interfacial stresses for a 2 in long
cylinder is shown in Fig. 5b. The agreement between the analytical and FEM results is quite
good, especially for shearing stresses.

5,---.--.....-.--.....-.--.....-.--r----.---..,
1-0.25in

4 -- ........--RADIAL STRESS

ANALYTICAL SOLUTION
FEM SOLUTION

o 0.05 0.10 0.15 0.20 0.25
AXIAL DISTANCE FROM THE MID-CROSS-SECTION (in)

Fig.5a.
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4
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RADIAL STRESS ---- ....--

ANALYTICAL SOLUTION
FEM SOLUTION

o 0.2 0.4 0.6 0.8 1

AXIAL DISTANCE FROM THE MID-CROSS-SECTION (in)

Fig.5b.

The measured total and frictional forces during shear-off Instron tests (Fig. 4) are
F, = 3451b (1535 N) and FI = 1221b (543 N). Thus. the ultimate adhesive force calculated
as a difference Fa = F, - Ffis Fa = 2231b (992 N). The calculated maximum shearing stresses
at the end cross-sections due to the force Fa is 'max = 505 psi (3.48-1- X 106 Pa). The total
maximum shearing stress due to the combined thermal and external loading is therefore
3791 psi (26.153 x 106 Pa). The evaluated maximum thermally induced stress in this example
is about 6.5 times greater than the maximum stress caused by external loading.

The calculated total lateral force due to the normal thermally induced pressure is
Pn = 1341 Ib (5967 N), and the calculated coefficient of friction between pyrex and epoxy
is f = 0.091.

The distributions of the shearing stresses due to the external and thermally induced
loading, as well as the total stresses, are shown in Fig. 6a and Fig. 6b for cylinders, whose
lengths are 0.5 in (12.7 mm) and 2.0 in (50.8 mm), respectively. These figures indicate that
in short cylinders the shearing stress due to external loading is rather uniformly distri
buted along the cylinder, while the thermal shearing stress varies linearly. When the

l·o.2~ in
3

DUE TO
ld' 1 EXTERNAL

~ _L~~~~ _
II: 0 .': .
~ -1 .'
~ .....
i -2 .....

........
-3

..'
TOTAL~""

........'.....
......

-0.2 -0.1 0 0.1
AXIAL POSITION (in I

Fig.6a.
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cylinder length is increased, both stress categories decrease in the mid-portion of the cylinder
and increase towards the ends. In sufficiently long cylinders the stresses concentrate at the
cylinder ends.

CONCLUSIONS

The following major conclusions can be drawn from the executed analysis.
An engineering theory for predicting interfacial stresses in finite bi-annular cylinders

subjected to thermally induced and/or external shear loading is developed. It is aimed
primarily at the evaluation of the mechanical behavior of bi-material co-axial cylindrical
specimens, used to characterize the adhesive strength of polymeric materials. No special
adhesive is employed, so that the interfacial adhesive strength is due to the polymeric
material itself. However, this theory can be easily modified if such a "special adhesive" is
applied.

The thermally induced shearing stresses at the interface are anti-symmetric with respect
to the mid-cross-section of the cylinder. They are zero in this cross-section and increase in
magnitude when approaching the cylinder ends. For relatively short ("disc-like") cylinders
with sufficiently compliant interfaces, the shearing stresses are distributed linearly along the
cylinder, and the maximum values of these stresses are proportional to the length of the
cylinder. In another extreme case, for long enough ("tube-like") cylinders with relatively
stiff interfaces, the shearing stresses concentrate near the cylinder ends, and their maximum
values are independent of its length. In our analytical model the maximum shearing stresses
take place at the end planes, while the finite element analysis predicts that the maxima of
these stresses are somewhat shifted from the ends. However, the maxima evaluated on the
basis of the analytical stress model and the finite-element-method are in good agreement,
especially for long cylinders.

The thermally induced radial pressures (stresses) at the end cross-sections are inde
pendent of the cylinder length. Naturally, in short cylinders they remain constant along the
cylinders, so that the stresses in the inner portions of the cylinder are also length-indepen
dent. For not too long cylinders the radial pressures in the inner portion of the cylinder
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increase with an increase in the cylinder length. However. in sufficiently long cylinders with
stiff enough interfaces. the radial pressure in the mid-portion ceases to increase with a
further increase in the cylinder length and remains constant over almost the entire cylinder.
Only at the very ends does the pressure decrease to a lower value. The calculated average
radial pressures are in quite good agreement with the finite-dement-method predictions.

The shearing stresses due to an external shear load. unlike thermally induced shearing
stresses. are symmetric with respect to the mid-cross-section and are not zero at this cross:
section, but they do reach their minimum value there. The maxima of the shearing stresses
take place at the end planes, as is also the case with the thermally induced stresses. For
short enough cylinders with sufficiently compliant interfaces the shearing stresses caused
by external loading are distributed more or less evenly along the cylinder. When the cylinder
length increases. the stresses in the inner part of the cylinder decrease. while the stresses in
the end portions go up. For long cylinders with stiff interfaces the stresses concentrate near
the cylinder ends, as in the case of thermally induced stresses. The minimum values of the
externally induced stresses in the inner part of long-and-stiff cylinders are close to zero, and
the maxima at the ends become independent of the cylinder length and are determined by
the applied force (per unit circumferential length at the interface), and by the axial interfacial
stiffness of the cylinder.

A bi-annular cylinder fabricated at an elevated temperature and subjected to an external
shearing load at a lower, say, room temperature, experiences both thermally and externally
induced stresses. The total shearing stress can be evaluated by superimposing the anti
symmetric thermal stresses and the symmetric externally induced stresses. It is this maximum
total stress which is responsible for the ultimate adhesive strength at the interface. In our
numerical example, which was carried out for strongly mismatched materials (coefficients of
thermal expansion for the inner and the outer materials are 2.8 x 10-· bre and 22.0 x 10 ·6re,
respectively), the maximum thermal shearing stresses in a 0.5 in (12.7 mm) long cylinder
were about 6.5 times greater than the maximum stresses caused by destructive external
loading (Le. by loading resulted in an adhesive failure of the bi-annular cylinder).

If destructive shearing tests ("shear off" tests) are performed and the total force Ft

and friction force Flare measured (these can be obtained from the "force vs time" diagram),
then the adhesive force Fa can be determined as the difference between the above forces.
Our theory enables one to evaluate the magnitude and the distribution of the ultimate
shearing stresses due to the force Fa and, using the calculated thermally induced stresses,
determine the total shearing stress due to the combined action of the thermally induced and
external forces.

As a by-product of this theory. the friction coefficient between the cylinder materials
can be determined for different temperature conditions. This can be done as a result of
dividing the friction force obtained from Instron testing by the calculated total lateral force
due to the normal thermally induced interfacial pressure.

In conclusion, we would like to emphasize that although our theory has been developed
for a rather narrow problem of materials science, it has a quite broad scope of applications.
Examples are: insulated tubes and electrical wires: coated optical fibers; high-pressure
vessels; shaft-hub joints in gears, turbines and propellers; and even barrels ofartillery guns.
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Fig. AI.
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Displacements in a cylinder loaded by axial shearing forces
Examine a cylinder, loaded by uniformly distributed axial shearing forces (Fig. A I). The boundary conditions

are as follows:

(1,=0, T,,=TI whenr=r l

(1, = 0, T" = T2 when r = r2.

(AI)

(A2)

We assume that the radial and the the tangential normal stresses (1, and (19 are zero everywhere, that the
shearing stresses Tr: depend on the radius r only, and that the axial normal stresses (1: depend on the longitudinal
coordinate: only. Then the condition of equilibrium (see, for instance, Timoshenko, 1959)

0(1, OT" (1,-(19 0-+-+--=or 0: r

for the radial forces is fulfilled automatically, and the condition of equilibrium

for the axial forces results in the following ordinary differential equation:

I d d(1r
--(n) =-
rdr" dz·

Since the left part of this equation is z independent, and the right part is r independent, we conclude, that

I d d(1r
- -(n ) = 2Co - = -2Cordr n 'dz

where Co is constant. By integrating these equations we obtain:

where C I and C2 are constants of integration. After substituting the obtained formula for T" into the boundary
conditions (AI) and (A2) we find:

Then we obtain:

and shearing stresses are expressed as follows:

SAS 21.5/1-4
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.The constant C, can be p~t equal to zero, since there are no equilibrating loads applied at the end cross
sectlons. Therefore the longttudlnal normal stress is:

~

11, '" - ~(r,r,-r,r,);;.r;-r; _.

In order to determine the displacements. we use the following equations for the strains (see Timoshenko.
1959);

eli I v 2v1:,r,-1:,r,
1:'=7'=£-[O',-v(O',+O'o)J'" --£0"=-£' , , ;;

IT ~-0

Ii I v 2V1:~r2-"r,
eo = - = -EIl1o-v(O', +0',)] == - E-O" = -E ' , ;;

r ri-rj

CW I 0'. 21:,r,-"r,
s, '"~ = -E[IJ,-v(u,+lJo)] = -E' = - -£ - ~ , ::

c ~-0

eli OV 1:" 2(I+v) (1:,r,-"r,)r+("r,-1:,r,)r,r2r-1
y,.=-+-=-=--_.... ; , .. c:: or G G ri -ri

From the second equation we obtain:

Then the first equation is also fulfilled. The third equation in (A3) yields:

1
(A3)

(A4)

(AS)

where Aw(r) is an arbitrary function of the radius r. After substituting (AS) and (A4) into the last formula in
(A3) we obtain the following equation for this function:

d(Aw(r)) 2 (1:~r~-',r,)r+(I+v)(r~r,-"r,)r,r2r-1
-~=E . d-r? ..

Then we have:

(A6)

where the constant of integration is put equal to zero. since it does not result in any elastic strains.
Note. that if the force

acting in the zcross-section, were uniformly distributed over the cross-sectional area, then the axial displacements,
calculated in accordance with Hooke's law, would be

for all the points of this cross-section. Comparing this formula with (AS) we conclude that the function Av(r)
accounts for the additional axial displacements due to the nonuniform distribution of the intemalloads.

When the shearing stress is applied to the outer surface only (" ... 0) the formula (A6) yields:

This formula can be used for the evaluation of the axial interfacial compliance of the inner cylinder in a bi-annular
cylinder. Putting £ = £fh v =Yo, r, = rfh r2 =rio and '2'" '1'. we have:

The relative axial displacement of the points located on the outer surface (r = r ,) and in the mid-surface

(
_ ro+r,)

r=ro=-2-

of the cylinder is



Analysis of interfacial thennal stresses

so that the compliance coefficient is

&(&w) r, [2.' , rlJ
Ko = -- = £ (2 2) r, -ro+2(1 +vo)ro In-:- .

, 0 r, -ro ro

599

(A7)

In the case when the shearing stress in applied to the inner surface only (, 2 = 0) the fonnula (A6) yields:

Putting in this formula £ = £" v = VI> '1 = "and evaluating the relative axial displacement of the points located
on the inner surface (r = r I) and in the mid-surface

(
• r, +r2)

r=r, =-2-

of the outer cylinder, we obtain the following formula for the axial interfacial compliance:

(AS)

APPENDIX 8

Axial displacements due to lateral pressures
The radial and the tangential (circumferential) stresses in a thick-walled tube subjected to an internal (p,)

and external (p.) pressures can be evaluated by the formulas (see, for instance. Timoshenko, 1959):

(81)

where a and b are the inner and the outer radii of the cylinder. From these fonnulas we have:

(82)

The axial normal strains are expressed in the axisymmetrical problem of the elasticity theory as follows (Timo
shenko, 1959):

where tTz is the axial stress, and w is the axial displacement. As evident from this fonnula, the axial displacement
due to the lateral stresses tT, and tT, is

v (z
w= -£Jo (tT,+tT,)dz.

After introducing (82) into this formula we have:

In the case of an inner cylinder £ = £0' v = Vo. Pi = 0, Po =p, a = rOo and b = rIo so that

In the case of an outer cylinder £ = £ I> V = V I> Pi =P, Po = 0, a = r I> and b = r2, and therefore

2v 1 d
w = E: r~_dPz.

(D3)

(84)



600 E. Sl:HIR and T. M. SLLLlV.\:\

APPENDIX C

Radial displacements due to the radial and axial inIerraciallo<~dini./

If the cylinder is sufficiently short. and the plane stress approximation should be applied. then the following
formula for the radial displacements is used (see. for instance. Timoshenko. 1959):

I [ " a:b'JII =£(b'-a') (I-v)(p,<r-p"b')f-III +\'}(p.• -p,J -;- .

The notation here is the same as in the Appendix B. In the case ofan inncr cylinder £ == E j • " = \' ,. p. = O. Po =p.
a = ro. b = f,. and r = r,. Thus we have:

pr, [ • •
II == - £ (' . (I-I'.,)fi-(I +VII)f").

o fi -rii)
(CI)

In the case of an outer cylinder. putting £ = £,. \. = V,. Pi'" p. p" == o. a = fl' b = f,. and r = f,. we obtain:

(e2)

For relatively long cylinders when the plane strain approximation is used, the clastic constants £ and v in
the above formulas should be substituted by

v
and

respectively. This results in the formula:

for the inner cylinder and in the formula

pr,(l +v,) [ " • 'Ju=£(' , (1- ..v,)fi+r1, r,-r,)

(C3)

(C4)

for the outer cylinder.
The radial displacements due to the axial loading can be determined on the basis of the formula (Timoshenko.

1959)

for the tangential strain. As evident from this formula. the radial displacements caused by the axial stress (J', are
as follows:

The a"ial stresses in the inner cylinder are

and therefore the radial interfacial displacements (r = r,) can be evaluated by the formula

(C5)

The uial stresses in the outer cylinder are

T(:) . T)
<t. = 2 • = ;",£, (:

• 1t(r,-rj)

so that the radial interfacial displacements are expressed as :

(C6)


